
NRL Report 7914

Creeping Waves and Lateral Waves in
Acoustic Scattering by Large Elastic Cylinders

GEORGE VLADIMIR FRISK

Propagation Branch
Acoustics Division

July 1, 1975

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

M.



This dissertation was approved by

II'- as director

and by 7-Jp .A L ,u

4444 Oal--
and

as readers.

This report is a facsimile of a dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Grad-
uate School of Arts and Sciences, Catholic University of America, 1975.



TITNC(T.A RqTFTRn
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7914 |
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

CREEPING WAVES AND LATERAL WAVES IN This is an interim report on prob-
ACOUSTIC SCATTERING BY LARGE ELASTIC lem; work is continuing
CYLINDERS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

George V. Frisk

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory Problem S01-70.401; Project
Washington, D.C. 20375 62759N; ZF 52-552-003

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Director of Laboratory Programs July 1, 1975
Department of the Navy 13. NUMBER OF PAGES

Washington, D.C. 20360 97
14. MONITORING AGENCY NAME & ADDRESS(if different from Controling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This report is a facsimile of a thesis submitted to The Catholic University of America in partial
fulfillment for the degree of Doctor of Philosophy, conferred in May 1975.

19. KEY WORDS (Continue on reverse side If neceosary and identify by block number)

Creeping Waves Acoustic Scattering
Lateral Waves Elastic Cylinders
Surface Waves Circumferential Waves
Scattering Theory Underwater Sound Propagation

20. ABSTRACT (Continue on reverse oide If necessary and identify by block number)

The connection between creeping wave and flat surface wave theory is established by investi-
gating the limit of acoustic scattering from a solid elastic cylinder, imbedded in a fluid, whose
radius tends to infinity.

First, the asymptotic behavior of the complex circumferential wave numbers is calculated by
substituting the appropriate Debye- or Airy-type asymptotic expansions into the 3 x 3 secular
determinant and solving it using iterative techniques. It is found that, in the limit of infinite
cylinder radius, the wave numbers of the Rayleigh and Stoneley modes tend toward those of

(Continued)
DD JANF7 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014- 6601 UNCLASSIFIED
i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



T TM('fT. A qT1TF1T
.AAYIJHITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)

the Rayleigh and Stoneley waves on a flat elastic half-space, while the Franz mode wave
numbers tend toward the wave number of sound in the fluid. The longitudinal and transverse
Whispering Gallery mode wave numbers tend toward the longitudinal and transverse wave
numbers in the solid. Graphical results are presented for an aluminum cylinder in water (and i
one case, also in vacuum) and show good agreement with existing numerical results.

Then, using the Watson-Sommerfeld transformation, the limiting behavior of the solution to
the problem of the scattering of a cylindrical wave from a cylinder whose radius tends to
infinity is investigated. Using the analytic expressions for the creeping wave numbers, it is
shown that the residue sums corresponding to the different classes of circumferential waves
tend individually toward the different types of surface waves found on the flat surface.

UNCLASSIFIED
ii SECURITY CLASSIFICATION OF THIS PAGE(When Dote Entered)

irl



Table of Contents

Page

Introduction .i.. . . . . . . . . . . . . . . . . . 1
Chapter I. Surface Wave Modes on Elastic

Cylinders . . . . . . . . . . . . . . . 4

A. The Rayleigh Zero . . . . . . . . . . . . . 7

B. The Stoneley Zero . . . . . . . . . . . . . 10

C. The Franz Zeros . . . . . . . . . . . . . . 13

D. The Whispering Gallery Zeros . . . . . . . . 19

1. The Tran'sverse Whispering Gallery
Zeros ... . . . . . . . . . . . . . . 19

2. The Longitudinal Whispering Gallery
Zeros ... . . . . . . . . . . . . . . 22

E. Discussion of Results . . . . . . . . . . . 25

Chapter II. The Scattering of a Cylindrical Wave
by a Large, Solid Elastic Cylinder . 30

A. The Residue Sum'P. . . . . . . . . . . . . . 34

B. The Residue Sumi. . . . . . . . . . . . . . 37

Conclusions ... . . . . . . ... . . . . . . . . 46

Appendix A. Asymptotic Expansions of Cylinder
Functions . . . . . . . . . . . . . . . 48

Appendix B. The Reflection of a Cylindrical Wave
at a Plane Fluid-Solid Interface . . . 53

Appendix C. Creeping Waves and Lateral Waves for
the Fluid Cylinder . . . . . . . . . . 57

List of Illustrations . . . . . . . . . . . . . . . 59

Illustrations . . . . . . . . . . . . . . . . . . . 64

Bibliography . . . . . . . . . . . . . . . . . . . . 92

iii



Dedication

Th:is dissertation is dedicated to the memory of my

father, Vladimir George Frisk.

Acknowledgments

I rA arateful for thl- grant of an vdison i'~emorial Fellow--

slip at the Naval Research Laboratory, under which most of

tils work was Performed. I would like to thank 1dr. Burton G.

Hurdle, Head of the Propagation Branch, and Mr. Kenneth D.

Flowers, Head of the Scattering Section in the Acoustics Divi sion

at the Naval Research Laboratory, for their cooperation and

encouragement. The interest and cooperation of Professor Frank

A. Andrews [Captain, U. S. 'Navy (Ret.)], Director of the Catholic

University Interdisciplinary Acoustics Program, are also acknowl--

edged. I am indebted to Mrs. Diane O'Neill for her :oatient and

careful typing of the manuscript. Above all, I would like to

express my sincere gratitude to Professor Herbert Uberall for

his patient guidance, constant encouragement, and constructive

criticism in the preparation of this dissertation.

iv



-2l

Introduction

Prienomena of acoustic reflection on plane boundaries

between fluid and elastic media have been studied in the

literature 3joth theoretically and experimentally.' 2 A

striking feature is the appearance of the so--called Rayleich

-iave, a surface wave generated in the elastic medium at a

critical angle of incidence, and propagating with a speed

usually below and close to the shear wave speed in the solid.

Most of its energy is concentrated in the solid near the

bsoundary, but part of it leaks into the fluid, causing an

attenuation (complex wave number) in the propagation direction

along the surface.

An additional type of surface wave was shown to exist by

Stoneley. 3 This wave has a propagation speed close to that of

sound in the fluid, is unattenuated in the direction of propa-

gation, and most of its energy is concentrated in the fluid

along the boundary.

In addition to these genuine surface waves, there also

exist two types of lateral waves on a flat boundary between

solid and fluid, which propagate with the compressional and

shear speeds, respectively, of bulk waves in the solid.'

Scatterina from solid elastic cylinders has been investi-

gated by means of the Watson-Sommerfeld transformation applied

to the normal-mode series. 4 in tihis case, one finds "creeping

waves" with a surface wave type behavior, divided into two

classes: those with speeds close to the elastic bulk speeds

1



2

(Rayleighi and 'V7hispering Gallery waves), and those with speeds

close to the sound speed in thle fluid (Stoneley and Franz

waves). Previously, the Rayleigh and Stoneley-type waves (i.e.,

those tending toward the Rayleigh and Stoneley waves in t..e

flat limit) were studied by Grace and Goodman 5 and btY Lapin 6 by

analytic methods, while numerical discussions of the Rayleigh

and Whiisperina Gallery modes (higher order modes which arise

_ecause of the curvature of the surface) were given by Doolittle,

et al.4 The latter authors also treated the Franz waves, i.e.,

hiaher order modes in the fluid which arise because of the

curvature of the boundary (and which also exist on an irnene-

trable surface).
In the present work, we shall establish the connection

between creeping 7ave and flat surface wave theory by investi-

gating the limit of acoustic scattering from an elastic cylinder

whose radius tends to infinity. In Chapter , we calculate

the behavior of tie circumferential wave modes for large cylinder

radii. Accordingly, the appropriate Debye- or Airy--type asymp-

totic expansions for the cylinder functions are used to solve

the secular determinant for the complex surface wave numbers.

Numerical results for the Rayleigh, Stoneley, Franz, and Whispering

Gallery-. wav3 numbers are obtained as a function of fluid wave

number times cylinder radius for a solid aluminum cylinder in

water, and in one case, also in vacuum. In Chapter II, using

the Waatson-Sommerfeld transformation, we examine the behavior

of the solution for the problem of a cylinder scattering radia-

tion from a line source in the fluid as the cylinder radius tends

to infinity. In this limit, the residue sums corresponding to
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the different classes of circumferential waves found in

Chapter I are shown to tend individually toward the different

types of surface waves found on the flat surface. In this

way, the transition of creeping wave to surface wave theory,

as the scattering object tends toward a flat surface, is

established.



Chapter I. Surface W1ave Modes on Elastic Cylinders

The complex wave numbers of circumferential waves on

an elastic cylinder in a fluid are obtained as the roots

of a 3 x 3 determinant which may be derived in various ways.

One way consists in assuming interior and exterior solutions

in a form describing circumferential propagation 8 [with a

time factor exp(-iwt) suppressed]:

T=SC'e LVP Cr)
(la)

AZ= A Devf A; (Err)

(lb)

and

<!s t(6et<P Y (r (1lc)

where T , A are the elastic potentials and is the velocity

potential in the fluid; k is the acoustic wave number in the

fluid, and kL and kT are the wave numbers of bulk longitudinal

(compressional) and transverse (shear) waves in the solid,

respectively. Matching boundary conditions on the cylinder

surface5 then leads to the secular determinant. Alternately,

when the problem of sound scattering by a cylinder is solved

using the Watson-Sommerfeld transformation,4 the same deter-

minant appears in the denominator of the scattered field,

and its zeros give pole-type contributions which represent

4
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circumferential waves. The scattering problem is discussed

in Chapter II.

The determinant in question, as a function of Y , is 4

given by I - - I

a iitXx) x4J ol I
f) ex4,` (X) 0 i? T1 Y

0 0 L3OS T
where

= Qa [DJv (xL,)- axT.` (xL,

4%Y = MY [T (XL)_ XLY(X�SI

°( T I = S V TV [6R XT) ( t(

T3__vr/V 1 T X1

(2 a)

(2b)

-y =- - AT L_ ), 0AT.)tM 'r"-Y\' I -. .(2 c)

Here, aL is the cylinder radius; x=k.= Cent where C is

the sound velocity in the fluid; XLT=k i La = cJCL/cLT

where AC4.T are the bulk elastic velocities

that depend on the Lame constants he. and on the density

o0A of the cylinder material, while by is the density of

the ambient fluid. The primes on the cylinder functions

denote derivatives with respect to their argument.

Our subsequent analysis shows the existence of different

classes of zeros, corresponding to physically different types

of surface waves which have been classified in the Introduction.
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Each complex root Y= y-+LZ of the equation DXy)=o inserted

in Eqs. (1), yields a circumferential wave with wave number

vo-, phase velocity C==Wly and linear attenuation V/a-

Excitation and re-radiation of these surface waves take place

at a critical angle s given by sin&= Pc/C.

TW,7e shall be concerned with the case of large cylinder

radii, or large values of the parameters M) X(^IO))XLand XT

For this purpose, it will be necessary to utilize asymptotic

expansions of the cylinder functions, which assume different

forms in different regions of the complex V-plane, mainly

separated by anti-Stokes lines. In our case, the appropriate

division of the complex V-plane is shown in Figure 1. Only

zeros in the first quadrant need to be considered, those in

the second and fourth quadrant leading to exponentially

increasing waves, and those in the third quadrant differing

from those in the first only in their sense of circumnavigation.

Regions 1-4 are separated by the anti--Stokes lines of BUL),

AT) \,.and , respectively, on which also the zeros

of these functions and of their derivatives are located. The

circles, with radii determined by

JY-XLI I (2f{/) |rX| &(X) (4)

(;= KL or XT) define regions within which Airy-type

asymptotic expansions are maore accurate. Outside, Debye-

type expansions are appropriate; of these, transition-type

forms must be used near their corresponding anti-Stokes lines.
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In addition, anti-Stokes lines for JUKLrT) originate at XL)T

and run along the real axis to the left, with the zeros of

"VLIT) being located along them.

in the following, we shall consider physically different

types of surface waves, corresponding to different types of

zeros of D(v) in an individual fashion.

IA. The Rayleigh Zero

In the limiting case of the cylinder radius Moo, corre--

s,3onding to the case of a flat elastic half-space bounded by

a fluid, the speed iR of the Rayleigh wave is known for

practical cases to lie somewhat below the speed go of the

elastic shear bulk wave.' The corresponding zero '4 of G)>

in the case of large but finite radius of curvature, will

then lie to the right of XT in Figure 1, with an imaginary

part that puts it above the real axis. In this case, the

appropriate asymptotic expansions of all the cylinder functions

appearing in D(Y) are of Debye type; cf. Appendix A.

Equation (2a) when set equal to zero, can in general be

rewritten in the form

Xh&)o~ = a2&T XLXT;(XLX\ I 2 T) 2l-XL4K4Sj3

(5)

where

:(X.5~ By (X,)/ J^(XL) (6a)

- ('/x).s(Ž)(~(X t/X) l) (6b)
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h(X)H (x~VH$§6dx . (6c)

If the appropriate Debye expansions of Appendix A are

inserted, we obtain

+(Xr) 2g (XL1g x0 AS +- 3

(7a)

(7b)

(7c)

where ;=V/X; T-Y/X both being # f(i). Using these

expansions and calculating Eq. (5) to lowest order in Xi

writing V=ka&+8&() yields the well-known generalized

Rayleigh equation for the flat half-space bounded by a

fluid,'

1-2 L0 - L ( 4_$ 499K /l(8kr K-r (iLkkey (8)

which has as one solution the (complex) Rayleigh wave

number kR=W/gt to be considered in this section.

The behavior of the Rayleigh wave number kp~on a

cylindrically curved surface of large radius of curvature

is obtained by retaining terms of order Xi in Eq. (5) when

inserting Eqs. (7) into it. With an iterative procedure

that starts from the flat-limit Rayleigh wave number

OR' = kR + <Cl/(L Rai N OR ) (9 )
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the result for is found as

Xk4 T{ ?C, h i '2+RL}J+SR X Q
X& X +4

X~~~~; {-k XI L XAT_29 EAT+YLJ V r L ___ L te' '~~ L .k,94L T 

+.2L~ LFW AkL - k -k73
(lOa)

where

> (lOb)

(L=T). This agrees with an expression obtained pre-

viously by Lapin6. The derivation of Eq. (lOa) involved

expansions which are valid under the conditions

| |k t 6 ta - k i h (l10c)L~~~1K

Ims srne b causo (lOd)
Of these, the case k kT is most stringent because of

the proximity of kR to kTr in physical cases of interest.

For the case of a solid aluminum cylinder in water

(c=1493 m/sec, cL = 6420 m/sec, cT = 3040 m/sec, p1 =

1 g/cm , P2 = 2.7 g/cm 3), we calculated the flat Rayleigh

limit by solving Eq. (8) numerically, with the result

IZIZA = a. TRR * Oo/SS- Z (11)
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Subsequently, we calculated EpR from Eq. (lOa), using this

value for ix. The results are shown in Figure 2, where the

trajectory of i.p!/lk as a function of the parameter ka. is

plotted as crosses in the complex plane. The conditions of

Eq. (lOc) would indicate that the most reliable results are

those for ka?:.70. Also shown in the figure are points of the

trajectory obtained by Ugincius '9 who used convergent expan-

sions of the cylinder functions for ksL 25, and Debye expansions

for ka>25 for a numerical evaluation of the roots when Eq. (2a)

is set equal to zero.

The present results, for large values of ka, appear to

be a natural continuation of Ugincius' zero trajectory, while

the present low-Ia values might be less reliable because of

the approximations used as mentioned. Note that our results

were obtained as an expansion away from the Rayleigh limit,

while those of Ugincius tend towards it without having assumed

it as a limit.

It might be noted that in the limit of an elastic cylinder

in a vacuum (b,-io), the flat Rayleigh wave number k as well as

the correction term Ce become purely real, indicating no radia-

tive losses of the Rayleigh wave in this case.

IB. The Stoneley Zero

In the limit of the flat elastic half-space, the other

solution of Eq. (8) of physical interest is the Stoneley zero,3

a real root corresponding to a speed somewhat less than the

speed of sound in the fluid.' Accordingly, in order to obtain
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an extension of the Stoneley zero to the case of a finitely

curved cylinder, the transition-Debye asymptotic forms (as

outlined in Appendix A) were used in the left-hand side of

Eq. (5) because of the expected vicinity of the zero to the

anti-Stokes line between Regions 3 and 4 of Figure 1. Debye

forms, rather than Airy forms which are more appropriate in

the circle of Region 7, are used since we again want to obtain

the Stoneley zero in the curved case by expanding about the

known flat-limit Stoneley zero. Sufficiently close to zero

curvature, the radius of the Airy circle in the Y/ka plane

('reduced plane") becomes small enough for the Stoneley zero

to lie outside of it. (Even inside the circle, Debye forms

are not incorrect; they just become less accurate).

Ordinary (non-transition) Debye expansions were used for

the other cylinder functions in Eq. (5), so that the same

expressions as in Eqs. (7a, b) were inserted in Eq. (5).

However, the transition-Debye expansion

/4,,\ (x T /a~v * < x -1ly {;Vs x3-) I- V coslWlV/x

(12)

leads to the expression

h~~x)_(ff~b/ + ( I)X 

-+ ;Z (T%:- 1) /.J-e;Z~w -Xt)/-2Y~X (13)

now to be used in Eq. (5). Retention of the lowest-order

subdominant part in the transition-Debye form yields the

exponential in Eq. (13).
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Using an approach analogous to that for the Rayleigh

zero, we find the Stoneley wave number ksas

s- + (ES/4) + T(a~-
(14)

where is is the flat-limit wave number, and where

S { 9 X [, 2 <+X sLXsr*t >(?t 4X5L)

) {5 j7(ST
+ X.; + 3 f+ZX-[ _ht SLSsX. Cs1 k k~L

Z~i~gsf2-at" Z. /XS-ST5XL~~~~~5

- ZL ~cL~L~e -S-6'LX Xr

(15a)

with

(15b)

(L=L>T). This expression differs from a previous one

given by Lapin6 in some details. It is valid under

conditions similar to Eqs. (lOc, d) with kg replaced by

is; the most stringent one is the analog of Eq. (lOd).

It is important to note that the only imaginary correc-

tion term to the (real) Stoneley wave number for the flat

case is the exponential in Eq. (15a), which resulted from

retaining the subdominant term in the transition-Debye

expansion of /y &. Physically, it corresponds to the fact
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that on a cylinder the Stoneley wave radiates off tangentially

into the surrounding fluid while on a flat surface, its wave

number is real and it cannot radiate off any energy.

For the solid aluminum cylinder in water, we solved Eq. (8)

numerically and obtained

k s/k = l. oo.?,s- (16)

which agrees with earlier results.'0 Inserting into

Ea. (15a) yields the points presented in Figure 3, plotted

as a trajectory in the complex kS/t plane with values of ka.

as a parameter. The imaginary scale of the figure is greatly

expanded because of the smallness of the imaginary part of the

zero. Due to the mentioned conditions of validity of the

approximations, the points in the horizontal portion of the

figure may not be numerically reliable. It should be noted

that Lapin's6 formula would give the imaginary parts of the

Stoneley zeros only half as large as given by us, but we believe

this to be due to an error in Lapin's printed expression.

IC. The Franz Zeros

This type of zeros arises due to the finite curvature of

the surface, and therefore exists even in the case of impene-

trable objects. The corresponding surface waves get on and

off the surface tangentially,l and they are no longer present

in the limit of a flat surface. Therefore, one cannot expand

the positions of the zeros about the flat limit, as had been

done in the preceding sections. Instead, we shall expand about

the known positions of the zeros for either a soft or a rigid
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cylinder with finite curvature. The latter are given by the

complex zeros of S. (K) or H2Q M, respectively, 7 which are

located along the anti-Stokes line between Regions 3 and 4 in

Figure 1. Explicitly, they are"' (n= 1, 2 ......

- ~e~i&S/3,~ e2~~ [Z/46 - /(I(oijj()

(17a)

LV 3Wa)'l3+ '/+
(17b)

where flare the zeros of the Airy function, and 1"those

of its derivative:

AL (1-n)= O AL 75 (17c)

For the case of the elastic cylinder, we use the

ordinary Debye expansions for the cylinder functions in

; (L') J(x) of Eqs. (6), but the Airy-type asymptotic expan-

sions (Appendix A) for W&A. The latter are valid inside the

circle of Region 7 in Figure 1 and had also been used to

obtain Eqs. (17), but the results link up smoothly with those

for the zeros outside the circle, in the transition region

between Regions 3 and 4 where transition Debye expansions are

used.12 In fact, in the reduced vI/ plane, the radius of

the circle shrinks with increasing k(. at the same rate at which
the zeros tend towards its center.

One finds in this way:13

06g ~s + e -1 e - V/3n
3x a (+ ~( (~ w13) P(18)
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with p.> andrA defined in Appendix A. When this is substituted

in Eq. (5), we obtain the equation

Az'(-,V (I itC '/13)) =z. P (19a)

where

r=- ax [- (Cl 4AL / 97)(F~TL~:-) /..- + (I3x)-r al-
C3~~~~~ ~ ~ (x-SI7)X 

and

4 V CT TT[(TL)(fX )J3

The method to be used for solving Eq. (19a) will

depend on the magnitude of F'. Using Eqs. (A8) and the

relations

(19b)

(19c)

we obtain

I=X _(XI -11(~)K + /3X- -x)'13 + & (X- ) ,

fLrom Eq. (19b), to lowest order in the quantity X 83-

r = a (x EciT #/e4)
(20)

where *Q= k;/k (L=LT). For typical fluid-solid interfaces
It. 0~~~~~~~~~~3

one has , so that F'41for X=XcNCI (for an

aluminum cylinder in water,Xc4 6000). In this case, we

follow a method of Streifer and Kodis' 315 and, letting

7\1 we expand &,(,) and &6i) about's , defined in

Ea. (17c) as the zeros of Subsequently, the quantity

j-7.is expanded in powers of WE4 -LPexP(Zf/3), and we obtain
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from Eq. (19a):

f (xtv = _ y eL2/3 L&-'eA/ 72 +1/

- Le/ I A) i 1 +

(21)

Using Eq. (A8d), an iterative solution of this equation

gives the result for the Franz wave numbers (labeled by

VI= I1,2,- ) 

6F= XF/a (22a)

where

' .- e? V +
with

=; (ks ki,/) (~L.- T)
G g < gL ~~~~~~~~~~(22c)

(22d)

(22e)

L T (22f)

This result was arrived at after one iteration, assuming

that 6(L4OTIA, and that X =&(x *). These conditions are
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met for the material parameters of typical fluid-solid cases.

Accordingly, the above asymptotic expression for V constitutes

a series whose terms decrease as powers of X V3.

Note that in Eq. (22b), the first three terms agree

exactly with those of the rigid zeros, Eq. (17a), and that the

material properties enter only through higher-order terms.

As in the previous cases of the Rayleigh and Stoneley

zeros, the binomial expansions used in obtaining Eqs. (22a, b)

are valid under the conditions

x > Jl 7 /Q c~)J3/Z) (23a)

(23b)

(23c)

They impose lower limits on x, depending on the order

of the zero. In practice, these are found not to be very

stringent, the most stringent one being Eq. (23a) with

L=T. In fact, the lower limits of validity were found to

be as low as ka%3 for F1, and e.g. ka%60 for F5, for an

aluminum cylinder in water.

Equation (22b) will be a useful expansion for a large

range of x, as long as the numerical value of z is such that

subsequent terms decrease. However, if x becomes very large,

x > Xc (including the flat limit x- oe), we will have r>o from

Eq. (20). In this case, we expand A(l) and AL(Qj in Eq. (19a)

about D,, i.e., about the zeros of ALt() defined in Eq. (17c).
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Then, the quantity may be expanded in powers of 11g,

yielding

e (X)95_ _ >Q /)LI3D13J-If(6J./3)÷ t30-3+&(,(/3)~ (24)

Using Eq. (A8d) and iterating again, we obtain for the

Franz wave numbers Eq. (22a) with

VoF,= X Va ~341/3 e.2 v 3 I

~~~- its + 6 R +3zCttX

(X>Xc) (25)

which was arrived at after one iteration, assuming O(LLaT TI

and E= i). With this assumption, Eq. (25) again represents

a series whose terms decrease as powers of X Y3 . The first

three terms, in this case, agree exactly with those of the

soft zeros, Eq. (17b), and the material properties enter only

in higher order terms. Conditions of validity are now Eqs.

(23) with replaced by In.

Numerical values of Eq. (22b) are shown in Figures 4a

and 4b for the two lowest Franz zeros, Fl and F2, for an alum-

inum cylinder in water, as compared to the zeros for soft and

rigid cylinders in water. The zeros are plotted as trajectories

in the complex 6-1/k plane with values of ka as a parameter.
Only those soft-cylinder zeros are shown which do not interfere

with the rest of the figure. It is seen that in the range of

x presented here, the elastic-cylinder zeros lie close to those

for the rigid cylinder as expected. For increasing mode number,

corresponding elastic and rigid zeros move closer together.
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ID. The Whispering Gallery Zeros

This type of zeros also arises due to the finite curvature

of the surface, but is associated with the material properties

of the elastic solid, and therefore does not exist in the case

of impenetrable objects. Since they are no longer present in

the limit of a flat surface, we cannot expand the position of

the zeros about the flat limit. Instead, we find the positions

of the longitudinal and transverse Whispering Gallery zeros by

expanding about the known positions of the zeros of TV
and T(XTB , respectively. The latter are located on the real

axis in Figure 1, to the left of XL and MT, respectively, and

are given by(4 U=> )3 ...)

,T n),=-XLaT II T(L.)T/2Ž - ('"/o)(z/xL-T 6-&4$) (26)

where N are defined in Eq. (17Q).

ID1. The Transverse Whispering Gallery Zeros

In this case, we calculate the trajectories for the zeros

which tend toward XT for large cylinder radii. The region of

interest in Figure 1 is Region 6, where we use the ordinary

Debye expansions of Eqs. (7) for (XL0 , , and ,but

the Airy-type asymptotic expansion (Appendix A) for S(T)

T(XT}-31 t p i + A R'(2+ f 
3XT CXT c);T 4hZW

with p+ and t defined in Appendix A. One can write (XTB

in terms of 4 (KT) in Eq. (5) using Eq. (6b). Substitutincg

these expansions into Eq. (5), we obtain the equation

4i '(pl/A Z )= CT (2 .1)
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where

+ 3

3 ~~~T f~~~ ~TI ~(28b)

Using Eqs. (A8) and the relations

Ve= XT TV*&(Xm/ )NEXT) N2 ) + &(XT ) )~ ~ ~ ~~~( 8b

we obtain from Eq. (28b), to lowest order in the quantity XT

Pr. = 5(I/'). (29)

Therefore CT)1 for all XT>1, and letting 7=1, we expand

AL'('I) and A(it) aboutj.. Then the quantity 1-Jis expanded

in powers of I/fT yielding

T XTS) y uf +T + (-q 1|3) IrT + ' X 1) (0

Using Eq. (A8d), an iterative solution of this equation

gives the following result for the transverse Whispering

Gallery wave numbers (,= IQ,- ):

Bitvt '4T-Ii (31a)

where

YwTxn XT t @4 + 1 ). 

+lr! +3 tT 4-T) + l)
(3lb)
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with rT defined in Eq. (22c) and

UT = -Y y °r [(~-<X ' .+; e i;T

=: X(7AT- a o( _ ) + f HU. P(-o. )

,VT (-Z ZL)

(31c)

(31d)

This result was arrived at after one iteration, assuming

that 'L4.4T'41. The first three terms agree exactly with

those of the zeros of 3 (XT) , Eq. (26), and the material

properties enter only in higher order terms.

The binomial expansions used in obtaining Eqs. (31a, b)

are valid under the conditions

X > T 1fx

(32a)

3~~~~

(32b)

o0r \4¶TI

(32c)

They impose lower limits on X, depending on the order

of the zero, the most stringent condition being Eq. (32c).

For an aluminum cylinder in water, the lower limits of

validity were found to be ka%87 for TIT,l and e.g. ka%547

for WT,5. Numerical values of Eas. (31) for this case are

presented in Section IE.
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ID2. The Longitudinal Whispering Gallery Zeros

In this case, we calculate the trajectories for the

zeros which tend toward XL_ for large cylinder radii. The

region of interest in Figure 1 is Region 5, where we use

the ordinary Debye expansion of Eq. (7c) for h(x), and the

Airy-type asymptotic expansion (Appendix A) for f(XL):

{(XL5- +-I We+> + ALI MI-R I3
3 XL ? ~LALIX )(33)

with fE and K defined in Appendix A. The method used

for finding the longitudinal zeros involves an expansion

about the zeros of Y(XL) which lie on the anti-Stokes

line for TV(X,) (cf. Appendix A and Figure 1), and, there-

fore, would necessitate the use of the transition Debye

expansion (Appendix A) for $(XT)

$ (TQ-(-7) t[ U-S 8 T i/ (T 5

(34)

However, the use of Eq. (34) renders the solution of

Eq. (5) intractable analytically because of the presence

of an overlapping double infinity of zeros. One group arises

from the Airy function of XL and the other from the tangent

function of )(T. The latter group corresponds to the transverse

Whispering Gallery zeros which lie outside the circle of

Region 6, and they link up smoothly with our results, Eqs. (31),

for the zeros inside the circle. We, therefore, approximate

-RXTB in Eq. (34) by the appropriate non-transition Debye

expansion (Appendix A):

-sO<T):- L (I (-f B~) a Exr) * ( 35 )
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We will determine the validity of this approximation by a

self-consistent check after we have calculated the desired

zero positions.

Writing 5(XL' in terms of GL) using Eq. (6b) and sub-

stituting these expansions into Eq. (5), we obtain the equation

A (T)/'/K2= P. (36a)

where [ R

SXL. #P~3 NI &4X, ) . (36b)
Using Eqs. (A8) and the relations

we obtain from Eq. (36b), to lowest order in the quantity XL*

UL & i BXf (37)

Therefore, for C(LtLO(T4 P F>Ž for all X)>(L, and letting

we expand AL75 and AL(i5 about1^. Then the quantity

is expanded in powers of /ftl yielding

( (XLVS W+C/ :) CL L + cr(xL /3) (38!

Using Eq. (A8d), an iterative solution of this equation

gives the following result for the longitudinal Whispering

Gallery wave numbers (Il I,)...)

kWL 5~1 = YWL)VtI0; (39a)
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where

XL+ 1i 3 Q /3 L {(U

( 39b )

with XLdefined in Eq. (22c) and

LLL- 2(L ~ 214 _C 1GT VWL V% LI +t L CE-Z

L I lo(

eV~~~~P = {, T ld -(T2-Y tkaL -aTdLVr

(39d)

This result was arrived at after one iteration, assuming
that O(LOTlti.The first three terms agree exactly with

those of the zeros of E.(L2 Eq. (26), and the material

properties enter only in higher order terms.
The binomial expansions used in obtaining Eqs. (39a, b)

are valid under the conditions

/i:= >tlA. (40'a)

;<} Nn) ( 40b)

(40c)
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They impose lower limits on X, depending on the order of the

zero, the most stringent condition being Eq. (40c). For an

aluminum cylinder in water, the lower limits of validity were
found to be ka%23 for WL,l and e.g. kal141 for WL, 5.

In order to determine the validity of our approximation

for (XM-), we substitute our result for YwLvt , Eq. (39b) into
the exact expression, Eq. (34), and into the approximate

expression, Eq. (35), and compare the two for the case of an

aluminum cylinder in water. We find that the approximation

imposes an upper limit on x which increases monotonically

with mode number Y1. This result is illustrated in Figure 5,

where we have plotted, as a function of 'l, the value of ka at

which the absolute value of the relative error in the approx-
imation begins to exceed 25 percent. Numerical values of

Eqs. (39) are presented in Section IE.

IE. Discussion of Results

In this section, we present a graphical comparison, for
the specific example of a solid aluminum cylinder in water
(and in one case, also in vacuum), between our analytic results
for the various zeros and the results of Dickeyi'6 who used

numerical methods to solve for the roots of D(Y)=O. Dickey

did not use Eqs. (7), but calculated the asymptotic expansions

of the cylinder functions directly using the Airy-type expan-
sions of Appendix A or Watson's formulation' 7 of the Debye

expansions. It is found that the two methods complement each
other insofar as the analytic results can be more easily carried

to very high values of ka (where both methods become more
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accurate, but where the numerical trajectories of one type

of zero often become hard to determine and to identify among

the variety of other zeros), while the numerical results

retain their accuracy down to lower values of ka than the
analytic ones, due to the various approximations made in the

latter method. For the case of the Franz zeros, both methods

are accurate down to very low values of ka and the agreement

between the corresponding results is excellent. For the
Rayleigh, Stoneley, and transverse Whispering Gallery zeros,

an apparently smooth transition is obtained from the numerical

results below ka100 (below ka%200 for the Whispering Gallery

zeros) to the analytic results for the higher values of ka
up to ka-)oO. Numerical results for the longitudinal Whispering

Gallery zeros are not yet available.

Figure 6 presents the complex trajectories of for

the Rayleigh zero as a function of the parameter ka. The

circles represent the numerical and the crosses the analytic

results (the latter being also shown in Figure 2). The agree-
ment becomes better as ka increases. The circles appear to

tend towards the calculated flat Rayleigh limit for ka-**o(square),
which had been used as the anchor point for the analytic cal-

culation, but which has no connection with the numerical calcu-

lation.

In Figures 7, dispersion curves for the Rayleigh zeros are

shown for aluminum cylinders in water (Figure 7a) or in air

and vacuum (Figure 7b). The Rayleigh wave phase velocity V',t'

is plotted in Figure 7a relative to the sound speed in water;
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i.e., essentially the quantity ikRk/kA',.. is plotted, where

kk',-Re (kJ!). The results (circles: numerical results;

curve: analytic result) tend towards the flat

as ka-aeO. In Figure 7b, we plot the numerical Rayleigh zeros

(circles) for the case of an aluminum cylinder in air (C=330

m/sec, (Ok= 0.00129 /Civ2 ) and the analytic results (curve) as

well as some previous results of Viktorov8 "'' (crosses) for

the aluminum cylinder in a vacuum. Here, the values ofOC&

(i.e., normalized to the flat Rayleigh speed) are plotted vs.

lRttOL. The flat limit for aluminum-vacuum used here was taken' 6

as A,=O.933AT=2836 m/sec.

Figure 8 presents the numerical results (solid circles)

and the analytic results (crosses) for the Stoneley wave phase

velocity, kso/c. , approaching the flat Stoneley limit CS/t,=

0.9975 (calculated by our numerical solution of the flat

Rayleigh equation) as ka-zo. For values up to ka = 100, the

agreement is not as close as for the case of the Rayleigh zero,

but as pointed out earlier, the analytic method should become

valid for the Stoneley zero only at relatively higher values

of ka as compared to the Rayleigh pole.

The first five Franz zeros, together with the Stoneley

zero again, are shown in Figure 9; here, Figure 9a presents

dispersion curves of PC-lp, and 'ts'f, plotted vs. ka and Figure

9b shows the normalized attenuations or imaginary parts of the

wave numbers, +Z/ko. and Ys'41ja , plotted vs. ka. The agree-

ment between the solid curves (analytic results) and the
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circles (numerical results) is excellent, reflecting the
increased overlap in the range of validity of the two methods

for this case.

Results for the Stoneley zero (solid circles and crosses)

have been entered in Figures 9a and 9b also. While its dis-

persion curve is very similar to that of one of the lower

Franz zeros, it may nevertheless be clearly distinguished from

the latter by its much lower attenuation as seen in Figure 9b.

In Figure lOa, the dispersion curves ofklu)T/A for the

first five transverse Whispering Gallery zeros and ep,/P for

the Rayleigh zero are plotted vs. ka. The solid curves are

the numerical results, while the long dashes correspond to

the analytic results for which the previously mentioned con-

ditions of validity, Eqs. (lOc) and (32c), are satisfied; the

short dashes represent the analytic results for which these

conditions are not satisfied. There is a smooth transition

from the numerical to the analytic results, with the value

of ka for which they link up increasing with mode number, as

expected. In Figure lOb, the normalized attenuations YLAALT

are plotted vs. ka. The numerical results (solid curves) are

shown for the first four zeros, while the analytic results

(long dashes) are shown for the first two. Although the agree-

ment between the twfo methods is not as good here as it was in

the dispersion curves, there is, nevertheless, a smooth transi-

tion from the extrapolated numerical (short dashes) to the

analytic results at high ka's.
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The analytic results for the first seven longitudinal
Whispering Gallerv zeros are shown in Figure 11. The dis-

persion curves of Cw vs. ka are given in Fiqure lla, and

the normalized attenuations VI/ita),L vs. ka are plotted in
Figure llb. For each mode, the region of areatest accuracy

is shown as a solid curve whose lower limit is determined

from Eq. (40c) and whose upper limit is ka from Figure 5.max

Thus, our analytic and Dickey's numerical results,

arrived at independently, are in good agreement with each

other, increasingly so at high values of ka where the quantities

tend toward their expected flat limits.



Chapter II. The Scattering of a Cylindrical Wave

by a Large, Solid Elastic Cylinder

If a cylindrical wave, emanating from an infinite line

source of unit strength at S(rOo) in the fluid, is incident

upon a solid elastic cylinder of radius a-(Figure 12), the

total acoustic pressure at point P(vf<) in the fluid is1'19

(with a time factor exp(-Lot) suppressed]

AF'= s -iscOs~tct(BnlP:)R40Erob) r~tO (41a)

where

F-0=1; Gn=;Z, n>o,

b t~ H + L,+
(41b)

a 1

in~X Ffea (X) ye LR Z Ta

O ~OX o3 T3 

(41c)

and 0(,~ and A (Ly~ are defined in Eqs. (2).

30
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Application of the Watson-Sommerfeld transformation 1 '19
to the series solution then leads to

(42a)

where

>=1pio ye + Bnn-qV \"JD Hv''rb
(42b)

rt s S~Cu C t( -BX C<SON

(42c)

and the contours C and Co are shown in Figure 13 and

result from opening up the original contour C of the Watson

transformation. The contribution of the "background

integral" P has been shown to be small2 0 and will be

neglected. The contour CO surrounds the zeros of 'D (first-

order poles of the integrand) discussed in Chapter I.
Splitting 7-r into integrals over contours CL and C. (Figure

14) and applying Imai's transformation',19

COs At-)- COSY¶ -Le SroV1-

(43)
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to the integral over Ca serves to split off the geometrical

part of the solution (which no longer has V/sivt'i in the

integrand),thus yielding residue sums which converge on both

the insonified and shadow sides of the cylinder. The geometri-

cal part P can be evaluated using the saddle point method

(corresponding to the far-field approximation rr,--V), where

the saddle point contour Cs is drawn in Figure 14. Also shown

is the saddle point (to the right of ka) which yields the

incident wave and the saddle point YS which yields the geo-

metrically reflected wave1 ,19 and separates the two types of

residue sums FS and . (arising from the integrals around con-

tours C1 and C,). Higher-order saddle points yield waves

which are transmitted through the cylinder 20 We then have

PIC= pi + p~o~px (44a)

with

nD. Re P- /VYS

Y n S~~~r~q¢ybf v HHielY,,(lIrxB

(44c)

(44d)

where

Dy= Th/a4,.
( 44e )
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In the limit of infinite radius, it can be shown that yields

the corresponding geometrical portions of the field (i.e., r,

incident, Geometrically reflected, and transmitted waves) for

the flat elastic half-space (cf. Appendix B and Brill 2 0 ,2 1 ).

We are concerned here with the residue sums P,, and.r,, which

yield circumferential waves, in the limit of zero curvature.

Wl-e first examine the limiting behavior of the saddle point

M, since its position determines which residue sum is used.

The equation which 'S satisfies is: 19

COS IS + -, co!l +O
kr kr. k Im (5

In taking the limit of Eq. (45), the following changes

of variable are used22 (and will be useful later on):

(46a)

(46b)

R= wL-oR 'Ž0 w))

(46c)

where & is the angle of incidence on the flat elastic

half-space. Thus,a, r, and r, tend toward infinity while

the source-surface and receiver-surface distances remain

constant. Keeping terms in Eq. (45) through a:), we then

find that:

(47)
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When we make the associations

sex Red >oi (48)

it is clear that Eq. (47) is exactly the equation satisfied
by the saddle point Q0 for the flat elastic half-space (cf.

Appendix B and Fig. Bl). Thus, the saddle point Vs which

yields the geometrically reflected wave in the cylindrical

case tends toward the saddle point &* which yields the geo-

metrical reflection in the flat case; the two are related by

the transformation Eq. (46a) between the M- and 9-planes. We

will investigate the case where RPvx,'asfX (cf. Figure 14)

which, in the limit, maps into the flat case shown in Figure

B2 and discussed in Appendix B. Thus, we consider a source-

surface-receiver geometry for which, in the flat limit, all
the surface waves (except the Stoneley) contribute to the
field at the observation point. From Figure 14, it is clear

that residue sum p, includes the Rayleigh and Whispering

Gallery poles, while residue sum Fa includes the Stoneley and

Franz poles.

IIA. The Residue Sumpa

Using the expansion'

);nS~n Nero > (49)

we can rewrite as

__', Z fi, [ 4VnVi;(+t1P +f P.V-t-2m+

x YS plyn(Sb H<^(irv5> Rcvnjys (50)
YK YK 
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We then separate , into the sums 1?2,F over the Franz poles

and over the Stoneley pole. Using the Franz pole

positions VFA of Eq. (25), the appropriate Debye expansions

(cf. Appendix A) for the Hankel functions of y% and rV , and

Eq. (46b) along with the relations (cf. Figs. 15)

) do= C.y0oj (50a)

l y= Cos l qr ) F0= cos r (50b)

we find the following asymptotic expression for the Franz

waves:

+ entcco~{+ Ck +k.rhs LsX

(5la)

where

Itr= ';2W~ rl~\i%/3O- lt (51b)

i; -=f-31 )(51c)

and the arc lengths S and S' are shown in Figures 15.
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The term contributes an algebraic (non-exponential)

factor (e.g., see Nussenzveig's calculation for the soft

sphere2 3 ). Thus, the no Franz wave gets on the cylinder

tangentially, creeps clockwise as in Figure 15a (or counter-

clockwise as in Figure 15b) around the cylinder [traversing

the arc length S (or S')] with speed )/(VtX4r) and attenuation

It,, and gets off tangentially after K circumnavigations. as

a tends toward infinity, kis and itS also become infinite,

so that in the limit of zero curvature, the Franz waves are

exponentially damned out and never reach the observation point.

Thus, they do not contribute to the field in the flat case.

In an analogous manner, we find the following asymptotic

expression for the Stoneley wave (cf. Figures 15):

+ e' [+40 ks4sS]-- iLS7 LS
+e L b-4*+-kS, S -w

(52)

where we have assumed that the fluid is slightly lossy so

that the flat Stoneley wave number h.t is complex ( ks= .S&isL).

Thus, the Stoneley wave is also exponentially damped out and

never reaches the observer. As the cylinder radius tends

toward infinity, the Stoneley wave contributes to the field

only in the case of glancing incidence ( in which case
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the method of steepest descent riust be modified to take into

account the effect of a pole near the saddle point Vs (cf.

Appendix B).

IIB. The Residue Sum s.

Using the expansion of Eq. (49), we can rewrite r as

h= s S E [P~~+2s -oe( ReRe

Fitful thug BH~~M oil 

Re tYv s.) (53a)

where

Y;C24A= X g - X Bz Ct=1>2> ) (53b))La ~ Li. 71.

L3 .2 73

)D~s,=| y Y | 9a't~ld o(Ts | (53c)

and 04, andoj T' (.-l,2,3) are defined in Eqs. (2) . We note

that Eq. (5), which we solved for the pole positions, corre-

sponds exactly to FICY) set equal to zero. We separate 1

into the sums p over the Rayleigh pole and pSl and ptT

over the longitudinal and transverse Whispering Gallery poles,

respectively.
We calculate pi first. Using the pole position

Y&I . o§61 = Urea ) ~~~~~~(54)
where ktks is given in Eqs. (9) and (10), the appropriate

Devye expansions (cf. Appendix A) for the Hankel functions
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of X , r, and rO and Eg,. (46c), we find that

______ ~~aL[)(%a - C-OS'~ P._g
A1§2 (x} iX-RRo-ts

Hf "' (Xk /_ H 41 ibN a t, 4% y o i M(55aVA ~ ~ ~ ~ ~ ~ ~~~k(55a)

H,( HYR,( x e.
) (55b)

where (cf. Annendix B)

X';'= (kt- kt5A= k cs .(55c)

Since L set eoual to zero and calculated to lowest order

in X corresponds to the oeneralized Rayleigh Eq. (8)f it can

be shown that, using Eq. (46a)

__ - ka COSa D(R

(56)

where D+ iS defined in Ec. (B3c). Conbining Egs. (55) and

(56), and using Ec. (46b) along with the fact that asyraptot-

ically (cf. Figure 16)

(57a)

(57b)

we find the following asymptotic expression for the

Rayleigh '. ave

+SE-(doF~b+ kASR20 s f;4]()

J F=0 ~> (59)
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where the arc lengths S. and S' are shown in Figure 16.

Thus, the Rayleigh wave is excited at the critical angle

tic- earcreeps clockwise (SR) or counterclockwise (S")

around the cylinder with speed /k, and attenuation IDOL

and radiates off the cylinder at the same angle after m

circumnavigations. As a tends toward infinity, I also

becomes infinite, and therefore the imaginary part of WkA

causes the wave which creeps around the shadow side of the

cylinder to be exponentially damped out, so that it never

reaches the observer. The same argument holds true for the

multiple circumnavigations (nio) and therefore the only wave

which reaches the observation point in the limit of infinite

radius is the one which traverses the finite arc length St

and corresponds exactly to the Rayleigh wave for the flat

elastic half-space [cf. Eqs. (B8)]:

D+A R (59 )

By using the Wronskian relation 2
4

___(X = Ut$tx' _ NL l

L/-4h(X) HyVX H'& k " V(^\(Xb (60a)

and the fact that [cf. Eq. (53b)]

1L(Y'3 -= C)) (60b)

we can further simplify our expression for

(61)
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we calculate the limiting behavior (x-+Po) of P1LL using the

pole positions &JLV% of Eqs. (39) even though the method used

to calculate them imposed an upper limit on X which increased

with mode number n(cf. Chapter ID2. and Figure 5). The just-

ification for this procedure will be seen later in the calcu-

lation. For 1 T we use the pole positions 'twy of Eqs. (31).

Then, using Eq. (46c) and the appropriate Debye expansions

(cf. Appendix A) for the Hankel functions of X, r, and r, , and

keeping one more order of accuracy of Y. in the phase terms

than in the algebraic factors, we find that

IH6(0 - ;Z Lt> axp{-R Stva-/t 13Li2 Ivy,~ .L~i
Vn COS °(LT - An,

ACbS XLeT x ((+T)4L,1

X- J U SY3 n=-VWL)WT,,n (62b)

where (cf. Appendix B)

K, (k.2~ SLLt - i -LT (62c)
In order to calculate the quantity

(63)

we use the following asymptotic expression for atDlL

[i.e., right hand side of Ea. (5)]:

+ 9L T (64)
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where '2,=V/x and T(-Yz, L=L)T is defined in Eq. (6a).

The following Airy-type asymptotic expressions forsofrq;
rr

and its derivative will also be helpful [cf. Eqs. (27) and

(33)]:

(X:) B e Ab> (65a)

(65b)

where we have calculated the leading order behavior of

these quantities. Then [ ('4Z)] for njn is found by

using the asymptotic expansions of Chapter ID2. and Eqs.

(64) and (65) along with the fact that [ef. Eqs. (36)]

An b| = rX ,6 (aD-4) <t-~~~~~I-) L5

The result is

['t/(5iRL~n'2~l~- e,( s ) 1 (67)

Similarly, [ 4(Y ]' for Y,=Vwsn is found by using the

asymptotic expansions of Chapter IDl. and Eqs. (64) and

(65) along with [cf. Eqs. (28)]

( %Py=MiTn Y M Lrl-UT) (68)

and the result is

f(YTv 1j + - (OT X (69)
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Finally, using Eqs. (62) and (46b) and the fact that

asymptotically (cf. Figure 17)

S Lt LT Vt 5 i T -T - )(7 LVJLTL~~~~ ~ (70a)

(70b)

(where NT is the excitation angle of the rt Whispering

Gallery wave) we find the following asymptotic expression

for the longitudinal and transverse Whispering Gallery waves:

P~~~~~~~~~~~s~~~T I ns1 Y L T { e LrT ' ,1/ , e;L~ -W(&L oT5 [4,+c+ S LAV Sglj] ()a SLT
(71)

X VjALIR'9LvT

where [ (YLiT )Y' is defined in Eqs. (67) and (69), AL (Ajrb

is the number of longitudinal (transverse) Whispering Gallery

poles in the first quadrant of theY-plane (cf. Figure 14),
and the arc lengths SL>T and SET are shown in Figure 17.

Thus, the ni% longitudinal or transverse Whispering Gallery

wave is excited at the critical angle &I.T given by

skn aLo In Rt [LjT + InV~ LT's7 
-~~~~~~ ) ~~~~~~~(72)

creeps clockwise ( SLux) or counterclockwise (SLIT) around

the cylinder with speed W// Sif&s and radiates off at the

same angle after m circumnavigations. If we assume that the

cylinder is slightly lossy, so that kLr has a small imaginary
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part, then as a tends toward infinity, SLT also becomes

infinite, and the waves which creep around the shadow side rr

of the cylinder [including the multiple circumnavigations

(m*o)] are exponentially damped out and never reach the

observer. Tne waves which remain are those which traverse

the f inite arc length StLTFLL .* Al, LSL3TJ L)T

(73)

We now approximate the residue sum in Eq. (73) by an

Integral:
L~ -J t T

7- ell ~aj/rt n ( h
V=I

(74)

where we have used the approximation24 for that holds

for larce vo

X L u (75)

The approximation of the sum by an integral is justified

because N/L.7- goes to infinity as a tends toward infinity and

because the function in the sum oscillates less rapidly as

M increases, so that the contributions to the sum (integral)

for small n tend to cancel out. Thus, the primary contribution

to the residue sum (integral) comes from the higher order poles.

We are, therefore, also completely justified in using the pole

positions >kWJn of Eqs. (39), since the method used to calcu-

late them imposed an upper limit on X which increased monot-

onically with mode number VI(cf. Chapter ID2. and Figure 5).
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We point out that the method of approximating the residue sum

by an integral is similar to that used by Tamir and Felsen25

for the dielectric slab problem. Rulf, 22 on the other hand,

in considering the fluid-fluid (withipcL ) cylinder problem,

did not use the explicit pole positions to evaluate the

residue sum, but converted it back to a contour integral

surrounding the poles. We treat the fluid-fluid case using

our method in Appendix C.

In order to evaluate the integral in Eq. (74), first we

change variables

W~~~~~~x ~~~~(76a)

and then we evaluate the resultant integral:

SO The Cq~ 4AL __jL )

LI / / ST (76b)

where we can assume that It.r has a small imaginary

part to assure convergence.26

In the limit of infinite radius, the expressions for

NL and pT then correspond exactly to the expressions

for the longitudinal and transverse lateral waves for a flat

elastic half-space [cf. Eqs. (B9)]:e .O(Lw [k (Jo+ J) + (LSL
( 77a)
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T~~~~~~~~~~ T1" 'l

cL [&(J4o+4)+kr5S]

(kT Sr) /
(77b)
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Conclusions

We have established the connection between creeping wave

and flat surface wave theory by investigating the limit of

acoustic scattering from a solid elastic cylinderimbedded in

a fluid, whose radius tends to infinity.

First, we calculated the asymptotic behavior of the com-

plex circumferential wave numbers by substituting the appro-

priate Debye-or Airy-type asymptotic expansions into the 3 x 3

secular determinant and solving it using iterative techniques.
The creeping wave modes fall into two classes: those with

speeds close to the sound speed in the fluid (Stoneley and

Franz waves) and those with speeds close to the bulk wave

speeds in the solid (Rayleigh and Whispering Gallery waves).

It was found that, in the limit of infinite cylinder radius,

the wave numbers of the Rayleigh and Stoneley modes tend toward

those of the Rayleigh and Stoneley waves on a flat elastic

half-space, while the Franz mode wave numbers tend toward the

wave number of sound in the fluid. The longitudinal and trans-

verse Whispering Gallery mode wave numbers tend toward the long-

itudinal and transverse wave numbers in the solid. Graphical

results were presented for an aluminum cylinder in water (and

in one case, also in vacuum) in the form of trajectories in

the complex wave number plane, phase velocities, and attenua-

tions, all as functions of fluid wave number times cylinder

radius. The results show good agreement with existing numerical

results.
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Then, using the Watson-Sommerfeld transformation, we

investigated the limiting behavior of the solution to the

problem of the scattering of a cylindrical wave from a cylinder

whose radius tends to infinity. Using the analytic expressions
for the creeping wave numbers, we calculated the asymptotic

behavior of the residue sums corresponding to the different
classes of circumferential waves. It was found that, in the
limit of infinite cylinder radius, the Rayleigh wave for the
cylinder goes over to the Rayleigh wave on the flat elastic
half-space, while the Franz and Stoneley waves are exponentially

damped out (the Stoneley wave contributes to the field in the

flat case only at glancing incidence, which is a special case
mathematically, and was not discussed). In the limit, the
longitudinal and transverse Whispering Gallery waves combine

to form the longitudinal and transverse lateral waves, respec-
tively, for the flat elastic half-space.

Thus, the transition of creeping wave to surface wave

theory, as the scattering object tends toward a flat surface,

has been established.



Appendix A

Asymptotic Expansions of Cylinder Functions 13,1417,23

In the following, we present asymptotic expansions of

cylinder functions where both the values of the (real) argu-

ment,I , and of the modulus of the (complex) index, V, are

large.

1. Debye asymptotic expansions

Debye expansions are appropriate for large values of

b/4 =fy(X) and are used outside the circles shown in Figure

Al whose radii are determined by Iv-GI_ &(ii/J). The Debye

expansions

X(1. {1I-(<L + (Ala)

X~ ~~[ {1+yj i + t2L
(Alb)

are valid in Regions I and II of Figure Al, with

R e (cOS- Y/Gb ~L ON

o No £tcU~l~z cA A ~~~~~~(Alc )
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These regions are separated by the curves

IT [(k Y)It IV COS /1M1X = O (A2)

and by the portions of the real axis as indicated in the

figure. The roots of /Iv(2) and of lie on the curves

labeled \1 in Figure Al, those of Hy( and on

the curves labeled

In Region III, one has instead

- L (325frex , y L~)I2 1/7 Jvft-
^j#'(7, - - +- ,L

4~ ~ ~~~Y A d(AtS^: ~a)t~-

(A3b)

with
Grz, CYL 4,/ /

le (cos-1) VO /1 > O

(A3c)

In Regions IV and V, the appropriate results are obtained

by using

S-v~ftSH J
S (X4 _'tf1l( (A4)

The curves he, are the anti-Stokes lines for the

asymptotic expansions of H.y(:f3, and the curves hew, those

for Hy,)(Jb . In the vicinity of these lines (the "transition
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region"), the sum of the asymptotic expansions for the two

adjacent regions has to be used.' In the ensuing "transition

Debye forms," the two exponentials then combine to form trig-

onometric functions, while outside the transition regions, one
of the two exponentials is dominant and the other subdominant.

Debye asymptotic expansions for the Bessel functions are,

for Region III
T (, )y-Ya pexy an IL..v cosV~v/Alj

(A5a)++~~~~~~~ 
with

Re (CO sv'i > 0

\Iww (coswl~~~~lC it/; . ~(A5b)
In all other regions, the appropriate expansions are found
by using

X( = [Y HH(L (A6)

together with the previously stated results for
The zeros of Jy(g are located on the real axis in Figure Al,

to the left of I . This portion of the real axis forms the
anti-Stokes line for Jv(2b, and in the surrounding transition
region, one must use

T (2Y- () .1 IA.) +( /L [t -ft

(A7a)
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with

W i = (2X-ytjl -v~oS t/%-q/s )(A7b)

where

(A7 c)

2. Airy-type asymptotic expansions

For the case that kS-l= , asymptotic expansions

of the cylinder functions which are expressed in terms of

the Airy function are appropriate. They are valid inside the

circles of Figure Al. We have13, 14

!-l($U() ~- (2 ol ei i3 e(-}eis~/) + Fdix~l/2 (V+1'j Aa

o) -1~~~I)(Ab
(A8a)

H "25 2eV~~~~~~~~~~~43ptlA (- VAk)+ tSe ^| 6

where

ror>95= W(-15>P. tib(2HailX (A8c)

(A8d)

with

'Z_ $X405@h(A8e)

and

po, (!'L-~ 15 (t) = Is M ' ' ) (A8f)

Qo ) Qi~~~~~t 60 ) > ~~~(A8g)
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and where the Airy function is given by

(A9a)

c.= ~2 i/L
3 )

(A9b)

it satisfies Airy's equation,

For one finds the compact expression

TV(z}) ( P A'(, 1)+ , t[I 3 b (All)



Appendix B

The Reflection of a Cylindrical Wave at a Plane

Fluid-Solid Interface

In this section, we calculate the total acoustic field
due to a line source in the presence of a plane fluid-solid

interface, where both source and receiver are situated in

the fluid. The analysis follows that of Brekhovskikh2 and

Uberall,' who considered the fluid-fluid and fluid-solid cases

for a point source, respectively. The field can be resolved
into the incident wave, the geometrically reflected wave, and

surface and lateral waves which propagate along the boundary

and radiate into the fluid.
The geometry of the problem is shown in Figure B1. An

infinite line source of unit strength is located at S. The
incident pressure wave at the observation point P is, there-
fore8 1 [with a time factor exp(-iwt) suppressed]

Zinc= I Ho<"<ke5. (Bl)

Using the Sommerfeld representation' 2 for the Hankel function,

we can write the incident field as a decomposition into plane

waves a with angle of incidence&:

C. (B2)

where the contour C is drawn in Figure B2. The reflected

wave is then given byl' 2

Tref =f e (B3a)
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where R(G) is the plane wave reflection coefficient for a
plane fluid-solid interface:'

(B3b)

with

7L4 f"LCOS& [ChS- S;M<)a+ 9&..r singsJ+ P~~Si L7 + ~bL.r s
CIL~tT (B3c)

and

T- . 2 dT 'K4i (B3d)

Equation (B3a) for the reflected wave can be rewritten
as

(B4)

where e0' is the distance from the image source S to the
observation point P.

The integral in Eq. (B4) is evaluated using the method
of steepest descent'' 2 , where we assume kr'>1. The path
of steepest descent Cs and the saddle point a. (corresponding
to the angle of incidence or reflection of the geometrically
reflected wave) are shown in Figure B2. The result for the
geometrically reflected wave is then

Or = y SeSM Rdeo) e'kf ~~~~(B5)

as expected from geometrical acoustics.

Additional contributions to the reflected field arise
from any singularities of R(O) which are crossed as contour
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C is deformed into contour Cs. Branch point singularities,

provided by the radicals kfiT are found at

a,= + sin~o, T=+sin~lotT (B6)

while poles [corresponding to solutions of D+=O, which is
completely equivalent to the generalized Rayleigh Eq. (8)]

of physical interest occur at

OR Sin (kR/i)5 aS= 5;t fistic ~(B7)
where and are the Rayleigh and Stoneley wave numbers

[e.g., Eqs. (11) and (16) for the water-aluminum interface].

These branch points (and the corresponding branch cuts) and

poles are shown in Figure B2.

The angles Re&W, s &R, and &Tare the critical angles

of incidence for excitation of the Rayleigh, Stoneley, and
longitudinal and transverse lateral waves, respectively (for
the water-aluminum interface: EL,=1326', &.=29o20G, Re =3lo36',

kRek=90'). When &ŽRe\,&L, and &., as in Figure B2, then the

Rayleigh and lateral waves contribute to the field at the
observation point P. The Rayleigh wave contribution is found

from the residue at the Rayleigh pole, while the longitudinal
and transverse lateral wave contributions arise from integrals
around the branch cuts originating at and N, respectively.
The resulting expressions are:

Rayleigh Wave:

= _, 4 E (L.+Lz + R ItL

(B8a)
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where

Lo= oo|S%) L-1cos1 (B8b)

Longitudinal Lateral Wave:

-L e /_ _L T ____ ____ _ _ e.
f§L 11R mn (t-of X;(>-;ZOxL2 (kLL (B9a)

Transverse Lateral Wave:

a I-;e9 On({(T6tL L Ek (Lo 1L-+kT L TPT- ad e- -- .- -
V m (1-O(T-) /+ 6(CKT'-tX3) |(ST LT)~

(B9b)

where

Lo= BoL° IUT c, L-Ios L.,T A- m ut*(B9c)

The geometrical meaning of these results is clear from

inspection of the phases and Figures B3 and B4. In each

case, the wave is excited at its critical angle, propagates

along the interface, and reaches the observation point P by

radiating into the fluid at the same angle.

The Stoneley wave is not excited unless ad il/2,(glancing

incidence), in which case the method of steepest descent must

be modified to take into account the effect of a pole near

the saddle point. 2 This case will not be discussed here.



Appendix C

Creeping Waves and Lateral Waves

for the Fluid Cylinder

In the case of scattering by a fluid cylinder (C-Tr-O) we

have the residue sur:pL of Eqs. (53) or (61) with

V,,VP L ~~~~~(Cl)
The Whispering Gallery pole positions are given by14

YVL)L V\= XL + 1n S/ J t (C2)

where, as in the case of the solid, the material properties

enter only in higher order terms. Using the appropriate

Debye expansions for the Hankel functions of X and Airy-type

expansions for the Bessel functions of XL (cf. Appendix A)

along with Eqs. (65) and the fact that

L :5.(Xj lY=wY li (C3)

we obtain the result

ea~~l~~G~~th )( ~(C4)

which is just the limit of Eq. (67) for the solid as O(T

goes to infinity. Then, using Eqs. (62), (46b), (70), and

(C4), and approximating the residue sum by an integral as

before, we find that

-VA|+ Of a e(wLZto)ld +iLS(C
A)L 4> f t1-ZL) (iLS 1 (C5)
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which is just the limit of Eq. (77a) as O(T goes to infinity

and corresponds exactly to the expression for the lateral
wave for a flat fluid half-space2 22.



List of Illustrations

Fig. 1 Complex V-plane with various regions in which dif-

ferent asymptotic expansions of cylinder functions

are employed in our analytic calculation.

Fig. 2 Rayleigh zero trajectory in the complex plane kR/k
at varving values of the parameter ka, for the case

of an aluminum cylinder in water.

Crosses: present work; solid circles: numerical

results of Ugincius9 ; solid square: flat Rayleigh

limit. Also shown is the location of DIT/I, whose

(real) numerical value is G.491.

Fig. 3 Stoneley zero trajectory in the complex plane ke'i,

at varying values of the parameter ka, for the

case of an aluminum cylinder in water.

Fig. 4 Franz zero trajectories in the complex plane 6Flk at

varying values of the parameter ka, for the cases of

soft (a), rigid (0), and aluminum cylinders (x) in

water: (a) first Franz zero, Y'=l, (b) second Franz

zero, Vt=2.

Fig. 5 The value of ka, as a function of mode number n, at

which the absolute value of the relative error in

the approximation to the tangent function, used to

59
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calculate the longitudinal Whispering Gallery zeros,

begins to exceed 25 percent.

Fig. 6 Rayleigh zero trajectory in the complex plane Iet/f

at varying values of the parameter ka, for the case

of an aluminum cylinder in water. Crosses: analytic

results; square: flat Rayleigh limit (ka-i0). Circles:

numerical results.

Fig. 7 (a) Normalized phase velocity 4R'/<- of the Rayleigh

wave for an aluminum cylinder in water, plotted vs.

ka. Circles: Numerical results, curve: analytic

results.
(b) Normalized phase velocity Ce//c. of the Rayleigh

wave, plotted vs. kjta. Circles: numerical results

for aluminum cylinder in air. Curve: analytic

results, and crosses: Viktorov's8'l8 results, both

for aluminum cylinder in a vacuum.

Fig. 8 Dispersion curve for the Stoneley wave on an aluminum

cylinder in water. Solid circles: numerical results.

Crosses: analytic results.

Fig. 9 Stoneley and first five Franz zeros for an aluminum

cylinder in water. (a) Dispersion curves, (b) normal-

ized attenuation. For the Franz zeros, analytic
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results are given by solid curves, numerical results

by open circles. For the Stoneley zero, analytic

results are given by crosses, numerical results by

solid circles.

Fig. 10 (a) Dispersion curves for the first five transverse

Whispering Gallery zeros and the Rayleigh zero for an

aluminum cylinder in water. The numerical results are
given by solid curves; the analytic results are shown
as long dashes where they are most accurate and short

dashes where they are less reliable.

(b) Normalized attenuations for the Whispering Gallery

zeros. Solid curves: numerical results for first four

zeros. Short dashes: extrapolated numerical results.

Long dashes: analytic results for first two zeros.

Fig. 11 The first seven longitudinal Whispering Gallery zeros

for an aluminum cylinder in water. (a) Dispersion

curves, (b) normalized attenuation. The analytic

results are shown as solid curves where they are most

accurate and dashes where they are less reliable.

Fig. 12 Geometry of the cylinder scattering problem; line

source at S, observer at P.

Fig. 13 The complex V-plane showing contours for the Watson-

Sommerfeld transformation used in the elastic cylinder
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scattering problem [Figure taken from Doolittle,

et al. 4 with permission of the American Institute

of Physics].

Fig. 14 The complex V-plane showing contours for separating

out the geometrical wave. Also shown schematically

are the positions of the saddle point Vis and the

Rayleigh ( Lt ), Stoneley (kstO), Franz (YF), and

longitudinal (VWL) and transverse (V&jT) Whispering

Gallery poles for a large, fixed value of ka.

Fig. 15 Franz or Stoneley wave getting on the cylinder tan-

gentially, creeping clockwise (Fig. 15a) or counter-

clockwise (Figure 15b) around it, and getting off

the cylinder tangentially.

Fig. 16 Rayleigh wave being excited at the critical angle 6Ot,

creeping clockwise or counterclockwise around the

cylinder, and radiating off at the same angle.

Fig. 17 Longitudinal or transverse Whispering Gallery wave

being excited at the critical angle 69 rT creeping

clockwise or counterclockwise around the cylinder,

and radiating off at the same angle.

Fig. Al Complex V-plane showing regions of validity for dif-

ferent asymptotic expansions of the cylinder functions,

used in the analytic calculation.
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Fig. Bl Geometry of an observer at P receiving a cylindrical

wave from a line source at S and a reflected wave

from the image source at S'.

Fig. 12 Integration path C for the incident and reflected

waves in the complex d-plane; saddle point is with

path of steepest descent Cs; Rayleigh pole Og, Stoneley

pole SI, and branch points kLOr with corresponding

branch cuts (dashed lines).

Fig. B3 Cylindrical wave from source S exciting Rayleigh wave

at point A, which propagates along interface and

reaches observation point P by radiating into fluid

at point B.

Fig. B4 Cylindrical wave from source S exciting longitudinal

or transverse lateral wave at point A, which propagates

along interface and reaches observation point P by

radiating into fluid at point B.
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